65 research outputs found

    Relación entre el método de evaluación del trabajo y el nivel de aprendizaje de los estudiantes

    Get PDF
    El objetivo del presente trabajo es presentar dos métodos para evaluar el trabajo realizado por los estudiantes fuera del aula y comparar el nivel de aprendizaje adquirido en cada uno de ellos. El primero se fundamenta en la evaluación entre compañeros, mientras que el segundo combina la autoevaluación y la realización de una prueba objetiva. En ambos casos, el objetivo fundamental es aportar una rápida retroalimentación a los alumnos. La comparación de las calificaciones de los estudiantes permite concluir que el uso de pruebas objetivas mejora el nivel de aprendizaje de los alumnos. La segunda opción ha requerido el desarrollo de una herramienta informática que evalúa las respuestas de los estudiantes a la vez que detecta posibles problemas en los enunciados de las pruebas objetivas.SUMMARY -- The main goal of this paper is to present two methods to evaluate the students’ homework, and to compare their learning level when these methods are used. The first one is based on peer-assessment, while the second one includes a self-assessment and a test. In both cases, the main objective is to provide a fast feedback to the students. Analyzing the students’ grades, we conclude that the use of tests improves the learning level of the students. The second method has required the development of an application which computes the assessment of the students and, at the same time, detects any problem in the formulation of the objective tests

    Iteration-fusing conjugate gradient for sparse linear systems with MPI + OmpSs

    Get PDF
    In this paper, we target the parallel solution of sparse linear systems via iterative Krylov subspace-based method enhanced with a block-Jacobi preconditioner on a cluster of multicore processors. In order to tackle large-scale problems, we develop task-parallel implementations of the preconditioned conjugate gradient method that improve the interoperability between the message-passing interface and OmpSs programming models. Specifically, we progressively integrate several communication-reduction and iteration-fusing strategies into the initial code, obtaining more efficient versions of the method. For all these implementations, we analyze the communication patterns and perform a comparative analysis of their performance and scalability on a cluster consisting of 32 nodes with 24 cores each. The experimental analysis shows that the techniques described in the paper outperform the classical method by a margin that varies between 6 and 48%, depending on the evaluation.This research was partially supported by the H2020 EU FETHPC Project 671602 “INTERTWinE.” The researchers from Universidad Jaume I were sponsored by Project TIN2017-82972-R of the Spanish Ministerio de Economía y Competitividad. Maria Barreda was supported by the POSDOC-A/2017/11 project from the Universitat Jaume I.Peer ReviewedPostprint (author's final draft

    An efficient GPU version of the preconditioned GMRES method

    Full text link
    [EN] In a large number of scientific applications, the solution of sparse linear systems is the stage that concentrates most of the computational effort. This situation has motivated the study and development of several iterative solvers, among which preconditioned Krylov subspace methods occupy a place of privilege. In a previous effort, we developed a GPU-aware version of the GMRES method included in ILUPACK, a package of solvers distinguished by its inverse-based multilevel ILU preconditioner. In this work, we study the performance of our previous proposal and integrate several enhancements in order to mitigate its principal bottlenecks. The numerical evaluation shows that our novel proposal can reach important run-time reductions.Aliaga, JI.; Dufrechou, E.; Ezzatti, P.; Quintana-Orti, ES. (2019). An efficient GPU version of the preconditioned GMRES method. The Journal of Supercomputing. 75(3):1455-1469. https://doi.org/10.1007/s11227-018-2658-1S14551469753Aliaga JI, Badia RM, Barreda M, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2016) Exploiting task and data parallelism in ILUPACK’s preconditioned CG solver on NUMA architectures and many-core accelerators. Parallel Comput 54:97–107Aliaga JI, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2016) A data-parallel ILUPACK for sparse general and symmetric indefinite linear systems. In: Lecture Notes in Computer Science, 14th Int. Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms—HeteroPar’16. SpringerAliaga JI, Bollhöfer M, Martín AF, Quintana-Ortí ES (2011) Exploiting thread-level parallelism in the iterative solution of sparse linear systems. Parallel Comput 37(3):183–202Aliaga JI, Bollhöfer M, Martín AF, Quintana-Ortí ES (2012) Parallelization of multilevel ILU preconditioners on distributed-memory multiprocessors. Appl Parallel Sci Comput LNCS 7133:162–172Aliaga JI, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2018) Accelerating a preconditioned GMRES method in massively parallel processors. In: CMMSE 2018: Proceedings of the 18th International Conference on Mathematical Methods in Science and Engineering (2018)Bollhöfer M, Grote MJ, Schenk O (2009) Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media. SIAM J Sci Comput 31(5):3781–3805Bollhöfer M, Saad Y (2006) Multilevel preconditioners constructed from inverse-based ILUs. SIAM J Sci Comput 27(5):1627–1650Dufrechou E, Ezzatti P (2018) A new GPU algorithm to compute a level set-based analysis for the parallel solution of sparse triangular systems. In: 2018 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018, Canada, 2018. IEEE Computer SocietyDufrechou E, Ezzatti P (2018) Solving sparse triangular linear systems in modern GPUs: a synchronization-free algorithm. In: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 196–203. https://doi.org/10.1109/PDP2018.2018.00034Eijkhout V (1992) LAPACK working note 50: distributed sparse data structures for linear algebra operations. Tech. rep., Knoxville, TN, USAGolub GH, Van Loan CF (2013) Matrix computationsHe K, Tan SXD, Zhao H, Liu XX, Wang H, Shi G (2016) Parallel GMRES solver for fast analysis of large linear dynamic systems on GPU platforms. Integration 52:10–22 http://www.sciencedirect.com/science/article/pii/S016792601500084XLiu W, Li A, Hogg JD, Duff IS, Vinter B (2017) Fast synchronization-free algorithms for parallel sparse triangular solves with multiple right-hand sides. Concurr Comput 29(21)Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, PhiladelphiaSchenk O, Wächter A, Weiser M (2008) Inertia revealing preconditioning for large-scale nonconvex constrained optimization. SIAM J Sci Comput 31(2):939–96

    Sparse matrix‐vector and matrix‐multivector products for the truncated SVD on graphics processors

    Get PDF
    Many practical algorithms for numerical rank computations implement an iterative procedure that involves repeated multiplications of a vector, or a collection of vectors, with both a sparse matrix AA and its transpose. Unfortunately, the realization of these sparse products on current high performance libraries often deliver much lower arithmetic throughput when the matrix involved in the product is transposed. In this work, we propose a hybrid sparse matrix layout, named CSRC, that combines the flexibility of some well-known sparse formats to offer a number of appealing properties: (1) CSRC can be obtained at low cost from the popular CSR (compressed sparse row) format; (2) CSRC has similar storage requirements as CSR; and especially, (3) the implementation of the sparse product kernels delivers high performance for both the direct product and its transposed variant on modern graphics accelerators thanks to a significant reduction of atomic operations compared to a conventional implementation based on CSR. This solution thus renders considerably higher performance when integrated into an iterative algorithm for the truncated singular value decomposition (SVD), such as the randomized SVD or, as demonstrated in the experimental results, the block Golub–Kahan–Lanczos algorithm

    Reproducibility strategies for parallel preconditioned Conjugate Gradient

    Get PDF
    [EN] The Preconditioned Conjugate Gradient method is often used in numerical simulations. While being widely used, the solver is also known for its lack of accuracy while computing the residual. In this article, we aim at a twofold goal: enhance the accuracy of the solver but also ensure its reproducibility in a message-passing implementation. We design and employ various strategies starting from the ExBLAS approach (through preserving every bit of information until final rounding) to its more lightweight performance-oriented variant (through expanding the intermediate precision). These algorithmic strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these strategies on modern HPC systems: both versions deliver reproducible number of iterations, residuals, direct errors, and vector-solutions for the overhead of only 29% (ExBLAS) and 4% (lightweight) on 768 processes.To begin with, we would like to thank the reviewers for their thorough reading of the article as well as their valuable comments and suggestions. This research was partially supported by the European Union's Horizon 2020 research, innovation programme under the Marie Sklodowska-Curie grant agreement via the Robust project No. 842528 as well as the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the H2020 EC RIA Programme; in particular, the author gratefully acknowledges the support of Vicenc Beltran and the computer resources and technical support provided by BSC. The researchers from Universitat Jaume I (UJI) and Universidad Politecnica de Valencia (UPV) were supported by MINECO, Spain project TIN2017-82972-R. Maria Barreda was also supported by the POSDOC-A/2017/11 project from the Universitat Jaume I, Spain.Iakymchuk, R.; Barreda, M.; Wiesenberger, M.; Aliaga, JI.; Quintana Ortí, ES. (2020). Reproducibility strategies for parallel preconditioned Conjugate Gradient. Journal of Computational and Applied Mathematics. 371:1-13. https://doi.org/10.1016/j.cam.2019.112697S113371Lawson, C. L., Hanson, R. J., Kincaid, D. R., & Krogh, F. T. (1979). Basic Linear Algebra Subprograms for Fortran Usage. ACM Transactions on Mathematical Software, 5(3), 308-323. doi:10.1145/355841.355847Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170Demmel, J., & Nguyen, H. D. (2015). Parallel Reproducible Summation. IEEE Transactions on Computers, 64(7), 2060-2070. doi:10.1109/tc.2014.2345391Iakymchuk, R., Graillat, S., Defour, D., & Quintana-Ortí, E. S. (2019). Hierarchical approach for deriving a reproducible unblocked LU factorization. The International Journal of High Performance Computing Applications, 33(5), 791-803. doi:10.1177/1094342019832968Iakymchuk, R., Defour, D., Collange, S., & Graillat, S. (2016). Reproducible and Accurate Matrix Multiplication. Lecture Notes in Computer Science, 126-137. doi:10.1007/978-3-319-31769-4_11Rump, S. M., Ogita, T., & Oishi, S. (2009). Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM Journal on Scientific Computing, 31(2), 1269-1302. doi:10.1137/07068816xBurgess, N., Goodyer, C., Hinds, C. N., & Lutz, D. R. (2019). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. IEEE Transactions on Computers, 68(7), 967-978. doi:10.1109/tc.2018.2855729D. Mukunoki, T. Ogita, K. Ozaki, Accurate and reproducible BLAS routines with Ozaki scheme for many-core architectures, in: Proc. International Conference on Parallel Processing and Applied Mathematics, PPAM2019, 2019, accepted.Ogita, T., Rump, S. M., & Oishi, S. (2005). Accurate Sum and Dot Product. SIAM Journal on Scientific Computing, 26(6), 1955-1988. doi:10.1137/030601818Kulisch, U., & Snyder, V. (2010). The exact dot product as basic tool for long interval arithmetic. Computing, 91(3), 307-313. doi:10.1007/s00607-010-0127-7Boldo, S., & Melquiond, G. (2008). Emulation of a FMA and Correctly Rounded Sums: Proved Algorithms Using Rounding to Odd. IEEE Transactions on Computers, 57(4), 462-471. doi:10.1109/tc.2007.70819Wiesenberger, M., Einkemmer, L., Held, M., Gutierrez-Milla, A., Sáez, X., & Iakymchuk, R. (2019). Reproducibility, accuracy and performance of the Feltor code and library on parallel computer architectures. Computer Physics Communications, 238, 145-156. doi:10.1016/j.cpc.2018.12.006Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468J. Demmel, H.D. Nguyen, Fast reproducible floating-point summation, in: Proceedings of ARITH-21, 2013, pp. 163–172.Ozaki, K., Ogita, T., Oishi, S., & Rump, S. M. (2011). Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications. Numerical Algorithms, 59(1), 95-118. doi:10.1007/s11075-011-9478-1Carson, E., & Higham, N. J. (2018). Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM Journal on Scientific Computing, 40(2), A817-A847. doi:10.1137/17m114081

    Relación entre el método de evaluación del trabajo y el nivel de aprendizaje de los estudiantes

    Get PDF
    El objetivo del presente trabajo es presentar dos métodos para evaluar el trabajo realizado por los estudiantes fuera del aula y comparar el nivel de aprendizaje adquirido en cada uno de ellos. El primero se fundamenta en la evaluación entre compañeros, mientras que el segundo combina la autoevaluación y la realización de una prueba objetiva. En ambos casos, el objetivo fundamental es aportar una rápida retroalimentación a los alumnos. La comparación de las calificaciones de los estudiantes permite concluir que el uso de pruebas objetivas mejora el nivel de aprendizaje de los alumnos. La segunda opción ha requerido el desarrollo de una herramienta informática que evalúa las respuestas de los estudiantes a la vez que detecta posibles problemas en los enunciados de las pruebas objetivas.The main goal of this paper is to present two methods to evaluate the students’ homework, and to compare their learning level when these methods are used. The first one is based on peer-assessment, while the second one includes a self-assessment and a test. In both cases, the main objective is to provide a fast feedback to the students. Analyzing the students’ grades, we conclude that the use of tests improves the learning level of the students. The second method has required the development of an application which computes the assessment of the students and, at the same time, detects any problem in the formulation of the objective tests.Financiado por la Unitat de Suport Educatiu de la Universitat Jaume I en el marco de un PIE (curso 2013/14)

    Compressed basis GMRES on high-performance graphics processing units

    Get PDF
    Krylov methods provide a fast and highly parallel numerical tool for the iterative solution of many large-scale sparse linear systems. To a large extent, the performance of practical realizations of these methods is constrained by the communication bandwidth in current computer architectures, motivating the investigation of sophisticated techniques to avoid, reduce, and/or hide the message-passing costs (in distributed platforms) and the memory accesses (in all architectures). This article leverages Ginkgo’s memory accessor in order to integrate a communication-reduction strategy into the (Krylov) GMRES solver that decouples the storage format (i.e., the data representation in memory) of the orthogonal basis from the arithmetic precision that is employed during the operations with that basis. Given that the execution time of the GMRES solver is largely determined by the memory accesses, the cost of the datatype transforms can be mostly hidden, resulting in the acceleration of the iterative step via a decrease in the volume of bits being retrieved from memory. Together with the special properties of the orthonormal basis (whose elements are all bounded by 1), this paves the road toward the aggressive customization of the storage format, which includes some floating-point as well as fixed-point formats with mild impact on the convergence of the iterative process. We develop a high-performance implementation of the “compressed basis GMRES” solver in the Ginkgo sparse linear algebra library using a large set of test problems from the SuiteSparse Matrix Collection. We demonstrate robustness and performance advantages on a modern NVIDIA V100 graphics processing unit (GPU) of up to 50% over the standard GMRES solver that stores all data in IEEE double-precision

    Compression and load balancing for efficient sparse matrix-vector product on multicore processors and graphics processing units

    Full text link
    [EN] We contribute to the optimization of the sparse matrix-vector product by introducing a variant of the coordinate sparse matrix format that balances the workload distribution and compresses both the indexing arrays and the numerical information. Our approach is multi-platform, in the sense that the realizations for (general-purpose) multicore processors as well as graphics accelerators (GPUs) are built upon common principles, but differ in the implementation details, which are adapted to avoid thread divergence in the GPU case or maximize compression element-wise (i.e., for each matrix entry) for multicore architectures. Our evaluation on the two last generations of NVIDIA GPUs as well as Intel and AMD processors demonstrate the benefits of the new kernels when compared with the optimized implementations of the sparse matrix-vector product in NVIDIA's cuSPARSE and Intel's MKL, respectively.J. I. Aliaga, E. S. Quintana-Ortí, and A. E. Tomás were supported by TIN2017-82972-R of the Spanish MINECO. H. Anzt and T. Grützmacher were supported by the Impuls und Vernetzungsfond of the Helmholtz Association under grant VH-NG-1241 and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. The authors would like to thank the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute of Technology for providing access to an NVIDIA A100 GPU.Aliaga, JI.; Anzt, H.; Grützmacher, T.; Quintana-Ortí, ES.; Tomás Domínguez, AE. (2022). Compression and load balancing for efficient sparse matrix-vector product on multicore processors and graphics processing units. Concurrency and Computation: Practice and Experience. 34(14):1-13. https://doi.org/10.1002/cpe.6515113341

    Exploiting nested task-parallelism in the H-LU factorization

    Get PDF
    [EN] We address the parallelization of the LU factorization of hierarchical matrices (H-matrices) arising from boundary element methods. Our approach exploits task-parallelism via the OmpSs programming model and runtime, which discovers the data-flow parallelism intrinsic to the operation at execution time, via the analysis of data dependencies based on the memory addresses of the tasks' operands. This is especially challenging for H-matrices, as the structures containing the data vary in dimension during the execution. We tackle this issue by decoupling the data structure from that used to detect dependencies. Furthermore, we leverage the support for weak operands and early release of dependencies, recently introduced in OmpSs-2, to accelerate the execution of parallel codes with nested task-parallelism and fine-grain tasks. As a result, we obtain a significant improvement in the parallel performance with respect to our previous work.The researchers from Universidad Jaume I (UJI) were supported by projects CICYT TIN2014-53495-R and TIN2017-82972-R of MINECO and FEDER; project UJI-B2017-46 of UJI; and the FPU program of MECD.Carratalá-Sáez, R.; Christophersen, S.; Aliaga, JI.; Beltrán, V.; Börm, S.; Quintana Ortí, ES. (2019). Exploiting nested task-parallelism in the H-LU factorization. Journal of Computational Science. 33:20-33. https://doi.org/10.1016/j.jocs.2019.02.004S203333Hackbusch, W. (1999). A Sparse Matrix Arithmetic Based on \Cal H -Matrices. Part I: Introduction to {\Cal H} -Matrices. Computing, 62(2), 89-108. doi:10.1007/s006070050015Grasedyck, L., & Hackbusch, W. (2003). Construction and Arithmetics of H -Matrices. Computing, 70(4), 295-334. doi:10.1007/s00607-003-0019-1Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170Buttari, A., Langou, J., Kurzak, J., & Dongarra, J. (2009). A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Computing, 35(1), 38-53. doi:10.1016/j.parco.2008.10.002Quintana-Ortí, G., Quintana-Ortí, E. S., Geijn, R. A. V. D., Zee, F. G. V., & Chan, E. (2009). Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Transactions on Mathematical Software, 36(3), 1-26. doi:10.1145/1527286.1527288Badia, R. M., Herrero, J. R., Labarta, J., Pérez, J. M., Quintana-Ortí, E. S., & Quintana-Ortí, G. (2009). Parallelizing dense and banded linear algebra libraries using SMPSs. Concurrency and Computation: Practice and Experience, 21(18), 2438-2456. doi:10.1002/cpe.1463Aliaga, J. I., Badia, R. M., Barreda, M., Bollhofer, M., & Quintana-Orti, E. S. (2014). Leveraging Task-Parallelism with OmpSs in ILUPACK’s Preconditioned CG Method. 2014 IEEE 26th International Symposium on Computer Architecture and High Performance Computing. doi:10.1109/sbac-pad.2014.24Agullo, E., Buttari, A., Guermouche, A., & Lopez, F. (2016). Implementing Multifrontal Sparse Solvers for Multicore Architectures with Sequential Task Flow Runtime Systems. ACM Transactions on Mathematical Software, 43(2), 1-22. doi:10.1145/2898348Aliaga, J. I., Carratala-Saez, R., Kriemann, R., & Quintana-Orti, E. S. (2017). Task-Parallel LU Factorization of Hierarchical Matrices Using OmpSs. 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). doi:10.1109/ipdpsw.2017.124The OpenMP API specification for parallel programming, http://www.openmp.org/.OmpSs project home page, http://pm.bsc.es/ompss.Perez, J. M., Beltran, V., Labarta, J., & Ayguade, E. (2017). Improving the Integration of Task Nesting and Dependencies in OpenMP. 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). doi:10.1109/ipdps.2017.69HLIBpro library home page, https://www.hlibpro.com/.Bempp library home page, https://bempp.com/.HACApK library github repository, https://github.com/hoshino-UTokyo/hacapk-gpu.hmglib library github repository, https://github.com/zaspel/hmglib.HiCMA library github repository, https://github.com/ecrc/hicma.Hackbusch, W., & Börm, S. (2002). -matrix approximation of integral operators by interpolation. Applied Numerical Mathematics, 43(1-2), 129-143. doi:10.1016/s0168-9274(02)00121-
    corecore